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Theorem (Brooks's theorem)

Suppose each vertex of G has degree at most d > 2. If d = 2,
suppose G has no odd cycles; if d > 3, suppose G does not
contain the complete graph on d + 1 vertices. Then x(G) < d.
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Let G be an undirected Borel graph:
e V(G) is a standard Borel space X.
o E(G) is Borel as a subset of X2.

The Borel chromatic number y5(G) of G is the least number of
colors needed to give a Borel coloring of G.

[Kechris—Solecki—Todor&evi¢, 1999] There is a Borel graph G for
which x(G) = 2 but xg(G) is uncountable.
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Failure of Borel Brooks's Theorem

Is the following true?

Question: Borel Brooks's theorem?

Suppose each vertex of G has degree at most d > 2 and G
contains no odd cycles or complete graphs. Then is x5(G) < d?




Failure of Borel Brooks's Theorem

Is the following true?

Question: Borel Brooks's theorem?

Suppose each vertex of G has degree at most d > 2 and G
contains no odd cycles or complete graphs. Then is x5(G) < d?

No — by a 2016 theorem of Marks, there are acyclic d-regular
Borel graphs having Borel chromatic number equal to d + 1.



Failure of Borel Brooks's Theorem

Is the following true?

Question: Borel Brooks's theorem?

Suppose each vertex of G has degree at most d > 2 and G
contains no odd cycles or complete graphs. Then is x5(G) < d?

No — by a 2016 theorem of Marks, there are acyclic d-regular
Borel graphs having Borel chromatic number equal to d + 1.

In fact, the set of acyclic d-regular Borel graphs having Borel
chromatic number at most d is £3-complete
[Brandt—Chang—Grebik—Grunau—Rozhoi—-Vidnyanszky, 2024].
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[Conley—Marks—Tucker-Drob, 2016] Suppose each vertex of G has
degree at most d > 3 and G does not contain the complete graph
on d + 1 vertices. Then x,(G) < d.

When d = 2, we encounter an ergodic theoretic obstruction.
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Theorem (Baire-measurable Brooks's theorem)

[Conley—Marks—Tucker-Drob, 2016] Suppose each vertex of G has
degree at most d > 3 and G does not contain the complete graph
on d + 1 vertices. Then xgu(G) < d.

Again, when d = 2, there is an ergodic-theoretic obstruction.
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Let D be a directed graph (or digraph). Then D is given by:
@ A vertex set.
@ A set of arcs (ordered pairs of vertices).
Then:
@ A map c: V(D) — {colors} is a dicoloring of D if no
directed cycle in D is c-monochromatic.
e The dichromatic number %' (D) of D is the least number of
colors needed to give a dicoloring.
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Proposition (Greedy bound for digraphs)

Suppose the maximum degree of each vertex in D is at most d.
Then X(D) < d +1.

Again, this bound is sharp, but because of just a few obstructions.

Theorem (Brooks's theorem for digraphs)

[Harutyunyan—Mohar, 2011] Suppose the maximum degree of each
vertex in D is at most d > 2. If d = 2, suppose D has no
symmetrizations of odd cycles; if d > 3, suppose D does not
contain the symmetrization of the complete graph on d + 1
vertices. Then X'(D) < d.
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Failure of Borel Directed Brooks's Theorem

There is also a Borel digraph without bidirected edges witnessing
the failure of Borel directed Brooks's theorem.

For each i < 3, let T; = Z/4Z = (i|y} = 1). Consider the left
shift action of I =g * 1 x5 on (2M)":

(a-x)(8) = x(a™'B).

The directed Schreier graph of this action with generators
0,71, Y2 has no Borel 3-dicoloring.
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Theorem (Measurable Brooks's theorem for digraphs)

[H., 2024] Suppose the maximum degree of each vertex in D is at
most d > 3 and D does not contain the symmetrization of the
complete graph on d + 1 vertices. Then ¥, (D) < d.

Proof outline:

@ Use the one-ended function technique of Conley—Marks—
Tucker-Drob to show that each component of D can be
dicolored outside of a carefully chosen Borel set.

@ Dicolor the “easy” components: Components having at least
one vertex with minimum degree less than d, and components
that are not Gallai trees. These components can be dicolored
in a Borel way.

© Dicolor the “hard” components, the infinite Gallai trees, by
discarding a p-null set.
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Gallai Trees

Let G be the underlying undirected graph of D.

e Aset S C V(G) is biconnected if the subgraph G[S] of G
induced by S is connected and G[S \ {s}] is connected for
each s € S.

@ A block in G is a maximal biconnected subset of V/(G).

@ A block S in G is bad if the subdigraph D[S] of D induced by
S is a directed cycle, the symmetrization of an odd cycle, or
the symmetrization of a complete graph.

@ A connected digraph is a Gallai tree if all its blocks are bad.



Gallai Trees

Underlying graph Directed graph

—

[ [—[]
[ [—1]
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“Easy” Components

How do we ensure that no two reserved vertices are adjacent?

Select the reserved vertices from an independent set of vertices
with minimum degree less than d.
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“Easy” Components

How do we ensure that color shifts on different blocks do not
interfere with one another?

Select the reserved good blocks so that, for distinct selected blocks
S, T, no neighbor of S is also a neighbor of T.
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Johansson’s Theorem for Digraphs?

Question: Directed Johansson's theorem?

[Erdés—Neumann-Lara, 1979] Suppose D is a digraph with no
bidirected edges. Assume each vertex in D has maximum degree at
most d. Then is }' (D) ~ o(d)?

We already know that the answer to this question in the Borel
context is no, even when the underlying undirected graph of D is
triangle-free.

It may be instructive to consider the p-measurable or
Baire-measurable setting.
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Other Questions

@ What can we say about the descriptive combinatorics of
hypergraphs?

@ What can we say about LOCAL algorithms for dicoloring? Are
there implications between descriptive digraph combinatorics
and LOCAL dicoloring algorithms?



Thank you!



