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Brooks’s Theorem

Let G be a finite undirected graph.

A map c : V (G ) → {colors} is a (proper) coloring of G if
x , y adjacent =⇒ c(x) ̸= c(y) for all x , y .

The chromatic number χ(G ) of G is the least number of
colors needed to give a coloring of G .

Proposition (Greedy bound)

Suppose each vertex in G has degree at most d . Then
χ(G ) ≤ d + 1.
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Brooks’s Theorem

However, these are the only obstructions.

Theorem (Brooks’s theorem)

Suppose each vertex of G has degree at most d ≥ 2. If d = 2,
suppose G has no odd cycles; if d ≥ 3, suppose G does not
contain the complete graph on d + 1 vertices. Then χ(G ) ≤ d .



Brooks’s Theorem

However, these are the only obstructions.

Theorem (Brooks’s theorem)

Suppose each vertex of G has degree at most d ≥ 2. If d = 2,
suppose G has no odd cycles; if d ≥ 3, suppose G does not
contain the complete graph on d + 1 vertices. Then χ(G ) ≤ d .



Failure of Borel Brooks’s Theorem

Let G be an undirected Borel graph:

V (G ) is a standard Borel space X .

E (G ) is Borel as a subset of X 2.

The Borel chromatic number χB(G ) of G is the least number of
colors needed to give a Borel coloring of G .

Fact

[Kechris–Solecki–Todorčević, 1999] There is a Borel graph G for
which χ(G ) = 2 but χB(G ) is uncountable.
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Is the following true?

Question: Borel Brooks’s theorem?

Suppose each vertex of G has degree at most d ≥ 2 and G
contains no odd cycles or complete graphs. Then is χB(G ) ≤ d?

No – by a 2016 theorem of Marks, there are acyclic d-regular
Borel graphs having Borel chromatic number equal to d + 1.

In fact, the set of acyclic d-regular Borel graphs having Borel
chromatic number at most d is Σ1

2-complete
[Brandt–Chang–Greb́ık–Grunau–Rozhoň–Vidnyánszky, 2024].
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µ-Measurable Brooks’s Theorem

Let µ be a Borel probability measure on X . The µ-measurable
chromatic number χµ(G ) of G is the least number of colors
needed to give a µ-measurable coloring of G .

If we relax “Borel” to “µ-measurable” in the statement of Brooks’s
theorem, then we get a true claim.

Theorem (µ-measurable Brooks’s theorem)

[Conley–Marks–Tucker-Drob, 2016] Suppose each vertex of G has
degree at most d ≥ 3 and G does not contain the complete graph
on d + 1 vertices. Then χµ(G ) ≤ d .

When d = 2, we encounter an ergodic theoretic obstruction.
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Let D be a directed graph (or digraph). Then D is given by:

A vertex set.

A set of arcs (ordered pairs of vertices).

Then:
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directed cycle in D is c-monochromatic.

The dichromatic number −→χ (D) of D is the least number of
colors needed to give a dicoloring.
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Failure of Borel Directed Brooks’s Theorem

There is also a Borel digraph without bidirected edges witnessing
the failure of Borel directed Brooks’s theorem.

For each i < 3, let Γi = Z/4Z = ⟨γi |γ4i = 1⟩. Consider the left
shift action of Γ = Γ0 ∗ Γ1 ∗ Γ2 on (2N)Γ:

(α · x)(β) = x(α−1β).

The directed Schreier graph of this action with generators
γ0, γ1, γ2 has no Borel 3-dicoloring.
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There is a µ-measurable version (as well as a Baire-measurable
version) of Brooks’s theorem for digraphs.

Let D be a Borel digraph on a standard Borel space X with a Borel
probability measure µ.
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[H., 2024] Suppose the maximum degree of each vertex in D is at
most d ≥ 3 and D does not contain the symmetrization of the
complete graph on d + 1 vertices. Then −→χ µ(D) ≤ d .



Measurable Brooks’s Theorem for Digraphs

There is a µ-measurable version (as well as a Baire-measurable
version) of Brooks’s theorem for digraphs.

Let D be a Borel digraph on a standard Borel space X with a Borel
probability measure µ.

Theorem (Measurable Brooks’s theorem for digraphs)

[H., 2024] Suppose the maximum degree of each vertex in D is at
most d ≥ 3 and D does not contain the symmetrization of the
complete graph on d + 1 vertices. Then −→χ µ(D) ≤ d .



Measurable Brooks’s Theorem for Digraphs

There is a µ-measurable version (as well as a Baire-measurable
version) of Brooks’s theorem for digraphs.

Let D be a Borel digraph on a standard Borel space X with a Borel
probability measure µ.

Theorem (Measurable Brooks’s theorem for digraphs)

[H., 2024] Suppose the maximum degree of each vertex in D is at
most d ≥ 3 and D does not contain the symmetrization of the
complete graph on d + 1 vertices. Then −→χ µ(D) ≤ d .



Measurable Brooks’s Theorem for Digraphs

Theorem (Measurable Brooks’s theorem for digraphs)

[H., 2024] Suppose the maximum degree of each vertex in D is at
most d ≥ 3 and D does not contain the symmetrization of the
complete graph on d + 1 vertices. Then −→χ µ(D) ≤ d .

Proof outline:

1 Use the one-ended function technique of Conley–Marks–
Tucker-Drob to show that each component of D can be
dicolored outside of a carefully chosen Borel set.

2 Dicolor the “easy” components: Components having at least
one vertex with minimum degree less than d , and components
that are not Gallai trees. These components can be dicolored
in a Borel way.

3 Dicolor the “hard” components, the infinite Gallai trees, by
discarding a µ-null set.
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Gallai Trees

Let G be the underlying undirected graph of D.

A set S ⊆ V (G ) is biconnected if the subgraph G [S ] of G
induced by S is connected and G [S \ {s}] is connected for
each s ∈ S .

A block in G is a maximal biconnected subset of V (G ).

A block S in G is bad if the subdigraph D[S ] of D induced by
S is a directed cycle, the symmetrization of an odd cycle, or
the symmetrization of a complete graph.

A connected digraph is a Gallai tree if all its blocks are bad.



Gallai Trees

Let G be the underlying undirected graph of D.

A set S ⊆ V (G ) is biconnected if the subgraph G [S ] of G
induced by S is connected and G [S \ {s}] is connected for
each s ∈ S .

A block in G is a maximal biconnected subset of V (G ).

A block S in G is bad if the subdigraph D[S ] of D induced by
S is a directed cycle, the symmetrization of an odd cycle, or
the symmetrization of a complete graph.

A connected digraph is a Gallai tree if all its blocks are bad.



Gallai Trees

Let G be the underlying undirected graph of D.

A set S ⊆ V (G ) is biconnected if the subgraph G [S ] of G
induced by S is connected and G [S \ {s}] is connected for
each s ∈ S .

A block in G is a maximal biconnected subset of V (G ).

A block S in G is bad if the subdigraph D[S ] of D induced by
S is a directed cycle, the symmetrization of an odd cycle, or
the symmetrization of a complete graph.

A connected digraph is a Gallai tree if all its blocks are bad.



Gallai Trees

Let G be the underlying undirected graph of D.

A set S ⊆ V (G ) is biconnected if the subgraph G [S ] of G
induced by S is connected and G [S \ {s}] is connected for
each s ∈ S .

A block in G is a maximal biconnected subset of V (G ).

A block S in G is bad if the subdigraph D[S ] of D induced by
S is a directed cycle, the symmetrization of an odd cycle, or
the symmetrization of a complete graph.

A connected digraph is a Gallai tree if all its blocks are bad.



Gallai Trees

Let G be the underlying undirected graph of D.

A set S ⊆ V (G ) is biconnected if the subgraph G [S ] of G
induced by S is connected and G [S \ {s}] is connected for
each s ∈ S .

A block in G is a maximal biconnected subset of V (G ).

A block S in G is bad if the subdigraph D[S ] of D induced by
S is a directed cycle, the symmetrization of an odd cycle, or
the symmetrization of a complete graph.

A connected digraph is a Gallai tree if all its blocks are bad.



Gallai Trees

Underlying graph Directed graph



“Easy” Components

Components having at least one vertex with minimum degree less
than d :



“Easy” Components

Components having at least one vertex with minimum degree less
than d :



“Easy” Components

Components having at least one vertex with minimum degree less
than d :



“Easy” Components

How do we ensure that no two reserved vertices are adjacent?

Select the reserved vertices from an independent set of vertices
with minimum degree less than d .



“Easy” Components

How do we ensure that no two reserved vertices are adjacent?

Select the reserved vertices from an independent set of vertices
with minimum degree less than d .



“Easy” Components

How do we ensure that no two reserved vertices are adjacent?

Select the reserved vertices from an independent set of vertices
with minimum degree less than d .



“Easy” Components

Components that are not Gallai trees:



“Easy” Components

Components that are not Gallai trees:



“Easy” Components

Components that are not Gallai trees:



“Easy” Components

Components that are not Gallai trees:



“Easy” Components

How do we ensure that color shifts on different blocks do not
interfere with one another?

Select the reserved good blocks so that, for distinct selected blocks
S ,T , no neighbor of S is also a neighbor of T .
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Johansson’s Theorem for Digraphs?

For an undirected graph G , a result known as Johansson’s theorem
improves on the upper bound on the chromatic number from
Brooks’s theorem when G is triangle-free.

Theorem (Johansson’s theorem)

Suppose each vertex in G has degree at most d and G is
triangle-free. Then χ(G ) ∼ O(d/ log(d)).

It is currently unknown whether any analogue of this theorem holds
for digraphs, even in the classical setting.

Question: Directed Johansson’s theorem?

[Erdős–Neumann-Lara, 1979] Suppose D is a digraph with no
bidirected edges. Assume each vertex in D has maximum degree at
most d . Then is −→χ (D) ∼ o(d)?
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bidirected edges. Assume each vertex in D has maximum degree at
most d . Then is −→χ (D) ∼ o(d)?

We already know that the answer to this question in the Borel
context is no, even when the underlying undirected graph of D is
triangle-free.

It may be instructive to consider the µ-measurable or
Baire-measurable setting.
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Other Questions

1 What can we say about the descriptive combinatorics of
hypergraphs?

2 What can we say about LOCAL algorithms for dicoloring? Are
there implications between descriptive digraph combinatorics
and LOCAL dicoloring algorithms?
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Thank you!


